If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-13.32t-0.8=0
a = 1; b = -13.32; c = -0.8;
Δ = b2-4ac
Δ = -13.322-4·1·(-0.8)
Δ = 180.6224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13.32)-\sqrt{180.6224}}{2*1}=\frac{13.32-\sqrt{180.6224}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13.32)+\sqrt{180.6224}}{2*1}=\frac{13.32+\sqrt{180.6224}}{2} $
| 32=n=50 | | 24=18+2y | | 4(x+2)-(x-10)=x+4 | | 7x-2=7x+14 | | 5000*0.04=x | | (85)+(5x-1)+(8x+5)=180 | | 2+5x-x^2=-2 | | 5x+2=2×+12 | | 3x+9x-7+2x+5=180 | | (b-4)/(6)=(b)/(2) | | 3x+9x+7+2x+5=180 | | 4x-9=6=x | | 14x+28/49x-49=0 | | 6x-5=13-33x | | 25x+4=159 | | 8+3p-5=15 | | 3(x+2x)+18=27 | | 100-3x=19 | | 3(x+2x)+18=37 | | 3n+17=60 | | 432+0,2x=144x | | 6x+60=4-4x | | x+52=102 | | 102=52+x | | 7/18m=3/5 | | 5s/6=15 | | 5.5+0.15a=6-0.5a | | 1.9x-5.3x=42.7-2.7x | | 5/2a-7/3=43/6-2/3a | | 10+11/x=-40+x | | 6a=4a-12 | | -3(x-4)+x=16–x |